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=P7L Reading Task - «Energy transition»

1. Trajectory of renewables: «Renewable energy passes 30% of world’s electricity supply”
+ See moodle file: Reading_1_Guardian, or

* https://www.theqguardian.com/environment/article/2024/may/08/renewable-energy-passes-30-of-worlds-
electricity-supply?CMP=Share AndroidApp Other

2. Trajectory of electricity consumption: Global Electricity Sources
* See moodle file: Reading_1 NYT

3. Kerry gives scathing rating on climate action: ‘Is there a letter underneath Z7?’

* See moodle file: Reading_1 Guardianb

» https://www.theguardian.com/us-news/2024/sep/23/new-york-climate-week-al-gore-john-kerry-condemn-fossil-
fuels?CMP=Share AndroidApp Other

= For the discussion on 31.10.2024, think about:
* What are the good news?
* What are the bad news?
* What action is needed?


https://www.theguardian.com/environment/article/2024/may/08/renewable-energy-passes-30-of-worlds-electricity-supply?CMP=Share_AndroidApp_Other
https://www.theguardian.com/environment/article/2024/may/08/renewable-energy-passes-30-of-worlds-electricity-supply?CMP=Share_AndroidApp_Other
https://www.theguardian.com/us-news/2024/sep/23/new-york-climate-week-al-gore-john-kerry-condemn-fossil-fuels?CMP=Share_AndroidApp_Other
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Basics

Present and future

Climate change

Actions

General outline
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Introduction

Climate System, Radiation, Greenhouse effect
Earth’s energy balance, Radiative transfer,
Aerosols & clouds, Radiative Forcing

Feedback mechanisms, Climate Sensitivity
Emergent Constraints, Paleoclimate

Climate variability

Paris Agreement, Emission Gap, IPCC — present day climate
change

Extreme Events

Climate scenarios (RCPs, SSPs), Tipping elements, 1.5 vs 2.0°C
Carbon budget, carbon offsets, metrics

Regional climate change

Mitigation and adaptation, Climate Engineering
Recapitulation of key points, questions and answers session

fill in Questionnaire in
EXErcises (not graded)

Launch of poster
assignment

submission of Poster
proposal (01.11.2024)

submission of Poster draft

submission of assignment
(graded)

Poster Conference raded)

fill in Questionnaire in
EeXercisSes (not graded)



=PFL Gonstraining with emergent constraints (the

concept)
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https://climate-dynamics.org/reducing-uncertainties-in-climate-projections-with-emergent-
constraints-part-1-concept/#more-1285

Hypothetical relationship between a predictor A and the
equilibrium climate sensitivity (ECS) for 29 climate
models.

Predictor A may represent, for example, the variability of
the surface temperature over time. On the y-axis, ECS
may be replaced by any climate-change projection. The
black line is the linear regression, and the grey vertical
bar is the observed value of predictor A (with its
uncertainty).

Arrows show the evolution of ECS after improving the
representation of predictor A for two climate models
having low (4) and high (24) ECS values.

If these climate models evolve following the red arrows,
the relationship may have been found by chance. If they
evolve following the green arrows, mechanisms
underlying the relationship gain credibility.

Since predictor A can be observed, this relationship can
be considered as an emergent constraint.


https://climate-dynamics.org/reducing-uncertainties-in-climate-projections-with-emergent-constraints-part-1-concept/#more-1285

=P7L Constraining with emergent constraints

Temperature anomaly (K)

Simulation of global warming record

Temporal variability (W) of the surface air temperature as observable metric to constrain ECS.

Y (K)

A<1.0Wm2K?
A>1.0Wm2K"!

® Observations

1880 1900 1920

1940

Year

1960

1980

2000 2020

Metric of variability versus time

0.5 1

— A<1.0Wm2K1
— 1>1.0Wm32KT

models

® (Observations

1940 1950 1960 1970 1980 1990 2000 2010 2020

End of window
55 years as time windows to derive ¥

Done for many time windows (not shown)

= Coxetal.,, 2018, Nature, doi:10.1038/nature25450
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Reduces the probability of ECS being less
than 1.5 degrees Celsius to less than 3 per
cent, and the probability of ECS exceeding
4.5 degrees Celsius to less than 1 per cent.



=PFL Why larger range of ECS with the newest
generation of climate models?

Aerosol forcing versus ECS for CMIP6 models

=0.2 * Newer climate models include more complex treatment
R? = 0.36 of aerosols.
—0.4 * Aerosols interact with clouds which strongly influence
the radiative forcing effect of aerosols.
v —06 » If the aerosol forcing is more negative, the climate
E sensitivity to CO, forcing needs to be higher to end up
s -08 with the same rate of warming.
= * However, CMIP6 models only show a week correlation
D =190 (R2=0.36).
L2
° -1.2
E Models with prognostic aerosol schemes and
< -14 aerosol-cloud interactions.
It is difficult to pinpoint the exact feedback
-1.6 mechanisms in the models that lead to high ECS. But
overall "cloud feedbacks and cloud-aerosol
-1.8 interactions in models with prognostic aerosol
0 1 2 3 4 5 & schemes seem to be playing an important role”.

ECS [K]

Critical to research
Fig. 4. Effective radiative forcing from aerosols versus ECS. Values supplied by

the modeling groups (Table 3); black line is linear fit with R” of 0.36. The numbers
denoting individual models are listed in Table 2.

= Meehl et al., Science Advances, 2021, https://advances.sciencemaaq.org/content/6/26/eabal981/tab-pdf



https://advances.sciencemag.org/content/6/26/eaba1981/tab-pdf

=PFL Uncertainty from aerosols and clouds

Aerosol-cloud interactions
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B. How can we reduce uncertainties
from aerosol and cloud forcing?

- defining the preindustrial

Cloud feedbacks and cloud-aerosol
interactions are the most likely contributors
to the high values and increased range of
ECS in CMIP6.

Meehl et al., Science Advances, 2021



=PFL  Aerosol-cloud interactions (ACl)

Incoming solar radiation
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IPCC, 2013, chapter 8, Fig. 8.16
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Probability density function

ERF from ARl and ACI

I L e | —o— AR4 RF -
1.2~ | . | l o ——1
B Greenhouse §
1.0 gases B
0.8 Aerosols —
Total 7

anthropogenic |

Stratospheric b
T adjust / ¢

Effective radiative forcing (Wm?)

d

7
/4 ERF: Net Flux

RF: Net Flux change at
change at TOA
- —l—- tropopause

fixed

I ot e

Tropospheric
temperature

Ocean
fixed

TRy Ry gy N

K.To

AR5 vs now:

better constrained
(less strong rapid adjustments)

AR5 vs now:
less constrained

(wider assessment of rapid adjustments)

I ions | ] . . |
——] ——]
5 —— 1.2 A : P i
44 107 _F; l';
34 i 1 5
06 { /N
2 Al ¥ A
SN /A
1 0.2 - ,’v; 'E L
& i
0 T T T / \ 0,0 -"“'"f 1\
—40 —-35 —30 -2,5 -2,0 —1,5 —1,0 —=0,5 0,0 0.5 —40 —35 -30 -2,5 -20 -15 —1,0 0,5 0,0 05
Radiative Forcing (Wm™2) Radiative Forcing (Wm™2)
Total aerosol
: . : ERF
1.2 | e em e RF
inconsistent consistent
1.0 with | _‘_.".__‘ eessssss——— A\ R5
. !
osd oObservations £t
0.6
0,4
0.2
0,0 T =
—-4,0 —-35 —-30 2,5 2.0 —15 —1I:l —EIS 00 05

Radiative Forcing (Wm—)

Bellouin et al.,

Rev. of Geophys., 2020



=P7L Determining the aerosol-cloud radiative effects

a [ T | N
- Clean Polluted
o frp- g
T L | Very difficult to determine the
I : . difference in cloud albedo =
0 ormation of new . . .
S | particles limited introduces large uncertainties
; by existing aerosol
Q
Q- _|
|| | | | | | |
Anthropogenic emissions
b d
o L _
£ | Bl
¢ | Drop formation |
S limited by
° supersaturation Qo
o 7 O — —
g = Very high
2 [ l l | | | ] - ey g
© 7 , o sensitivity of albedo
CCN concentration = — - emissiﬂns in —
c = ] - pre-industrial time
- -
8 Albedo ‘susceptibility’ — I I I I I I
= lower at high drop . . .
o | concentrations (ref. 1) _| Anthropogenic emissions
B | | | | | ]

Cloud drop concentration

- CCN Cloud Condensation Nuclei Carslaw et al., 2013, doi:10.1038/nature12674



=PrL

The challenge of climate science: small relative
quantities!

= We deal with small magnitudes of the changes in radiative fluxes and global
temperature relative to the magnitudes of the initial, unperturbed guantities to
determine current and future climate change.

= The observed change in global mean surface temperature of about 1.07 K
represents a change of about 0.3% relative to the initial 287 K. Even the 2 K
Increase represents a change of less than 1%.

= The challenge to the climate change research community Is to gain quantitative
understanding of the changes in quantities influencing climate change and the
expected response of the system to the accuracy necessary for informed

decision making regarding prospective controls on future emissions of climate
iInfluencing substances.

= Such quantitative understanding is essential to answering “what if" questions
regarding the consequences of future emissions of climate influencing
substances.

11






=P7L  Temperature over the last 500 million years
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Time scale
not linear!


https://upload.wikimedia.org/wikipedia/commons/f/f5/All_palaeotemps.png

=P7L  Temperature over the last 500 million years

Cretaceous-Paloegene
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Time scale
not linear!


https://upload.wikimedia.org/wikipedia/commons/f/f5/All_palaeotemps.png

=F7L  |sotopes
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Three different water molecules formed from 2 hydrogen atoms and
different oxygen isotopes (similar, but with different number of
neutrons in the nucleus).

The most common form is H,60.

For each 10,000 water molecules in nature,

only 3 are H,’O and 20 are H,!80.

https://www.iceandclimate.nbi.ku.dk/research/p
= ast atmos/past temperature moisture/

Isotopes refer to the different atoms or forms of an element with the same
atomic number but different atomic masses. So, they contain the same
number of protons and electrons but differ in the number of neutrons.

6 Protons 6 Protons 6 Protons
6 Neutrons 7 Neutrons 8 Neutrons
Carbon-13
(6P + 7N)

Atomic Weight = 13 Carbon-14

Carbon-12 Atomic Mass = 13.00335 u (6P + 8N)

(6P + BN) Abundance: 1.109% Atomic Weight = 14
Atomic Weight = 12 Isotope Mass: 14.003241 u
Isotope Mass: 12 u Abundance: 1 Part Per Trillion
Abundance: 98.89% Half-life: 5,730 + 40 Years

Carbon -14, Carbon-13, and Carbon-12 are isotopes
of carbon, as C-14 has 8 neutrons, C-13 has 7
neutrons and C-12 has 6 neutrons, whereas, all of
them have the same number of protons that is 6 and
the same number of electrons that is 6.

Only C-14 is radioactive.

https://www.javatpoint.com/isotopes-and-isobars



https://www.iceandclimate.nbi.ku.dk/research/past_atmos/past_temperature_moisture/
https://www.javatpoint.com/isotopes-and-isobars

=P"L  Temperature reconstruction from oxygen isotopes
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Near the poles, atmospheric water vapor
is increasingly depleted in "*O.

Heavy, "*O-rich water
condenses over
mid-atitudes.

of Antarcfica has
5 percent less '*O

<‘§ than ocean water.

( Waiterslightly depletedin '5C )‘
evaporates fromwdrm sub-fropic

During cold times: enrichment of 8180 near equator, strong depletion near poles

During warm times: less enrichment of 8180 near equator, less depletion near poles.

m  Jouzel, J., et al. Journal of Geophysical Research, 1994.

https://earthobservatory.nasa.gov/features/Paleoclimatology OxygenBalance



=P7L  And how do we determine age? ’

= Direct methods

« Counting of annual layers (sediments,
corals...)

« Counting of tree rings

= Radioisotope dating:
« 14C: Ty, (**C) = 5.73 ka (maximum age 44 ka)
« U-Th: T,,,(230TH) = 77 ka

= |ndirect dating methods:

* «event matching» (volcanic eruptions — tephra
layers, atomic tests, ...)

 «orbital tuning» (frequency fit to insolation)
* Model-based dating (e.g., ice flow modeling)




=P7L  Temperature over the last 500 million years
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https://upload.wikimedia.org/wikipedia/commons/f/f5/All_palaeotemps.png

=P*L  Paleocene-Eocene Thermal Maximum (PETM)
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Paleocene-Eocene Thermal Maximum (PETM) represents one of
the more prominent and abrupt climate anomalies in Earth
history.

Interesting to study, because represents a possible analogue
for the future and thus may provide insight into climate system
sensitivity and feedbacks (similar amount of carbon release in the
first 50 years of event compared to today).

The key feature of this event is the release of a large mass of
13C-depleted carbon into the carbon reservoirs at the Earth’s
surface, although the source remains an open issue. Biogenic
carbon is depleted in 13C.

Carbon levels increased by < 70% compared to pre-event levels.

With given climate sensitivity this leads to 1 — 3.5°C warming
only. But 5-9°C are inferred.

Other drivers unclear.

Zeebe et al., Nature Geoscience, 2009
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=P*L  Paleocene-Eocene Thermal Maximum (PETM)
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- The Geologic History of the Carbon Cycle, Sundquist and Visser, 2003,
doi:10.1016/B0-08-043751-6/08133-0



=FFL Earth’s Orbit "

Sun

25.7 kyr

\

Earth
orbit

Eccentricitiy: Obliquity: Precession of the axis
stronger change in radiation axial tilt between 22.1° and 1 ° each 72 years
over the year 24.5°

Larger tilt means more

insolation at poles.

Milankovic Cycles: Variations in eccentricity, precession and obliquity lead to varying solar insolation on Earth.
— Orbital forcing with an effect on Earth’s climate.



=P*L  Paleocene-Eocene Thermal Maximum (PETM)

Earth’s orbit played a role:

Coincidence of hyperthermals with combined
high-eccentricity and high-obliquity forcing
points to the influence of polar latitudes,
where seasonal insolation is strongly affected
by obliquity and precession during high-
eccentricity orbits.

— High-latitude orbital forcing through
carbon-cycle feedbacks involving permafrost
soil carbon (Antarctica only became glaciated
34 Myrs ago).
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DeConto et al., Nature, 2012, htips://doi.org/10.1038/nature10929



https://doi.org/10.1038/nature10929

=PrL Glacials and interglacials
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=PFL G0, concentrations from ice cores

Documentary “Ice and the sky”
(“Le glace et le ciel” by Luc Jacquet, 2015)

Charcot Station (1957)
/A

Ice is crushed in a cold vacuum container.
The air is then expanded into a measurement
device (e.g., gas chromatograph)

Method published in 1980 by Robert J. Delmas,
Jean-Marc Ascencio & Michel Legrand:
https://www.nature.com/articles/284155a0

Other methods explored in the 1960s and 70s were
not successful.

Claude Lorius (1955)
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=PrL Glacials and interglacials

When the blue line is below the grey line, glacial inception is possible.
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=PrL Glacials and interglacials

When the blue line is below the grey line, glacial inception is possible.
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=PFL  Regional differences over the last 2000 years

Arctic Europe
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=PFL  Reglional differences over the last 2000 years "
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Recent warming reversed the long-term cooling: during the period ad 1971-2000, the area-

weighted average reconstructed temperature was higher than any other time in nearly 1,400 years.

m PAGES2K, 2013, https://www.nature.com/articles/ngeol1797
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In nearly all regions: long-term cooling
trend, which ended late in the
nineteenth century.

Multi-decadal to centennial scales:
temperature variability shows distinctly
different regional patterns, more
similarity within each hemisphere than
between them.

There were no globally synchronous
multi-decadal warm or cold intervals
that define a worldwide Medieval Warm
Period or Little Ice Age, but all
reconstructions show generally cold
conditions between ad 1580 and 1880.
The transition to these colder
conditions occurred earlier in the Arctic,
Europe and Asia than in North America
or the Southern Hemisphere regions.


https://www.nature.com/articles/ngeo1797

=PFL  When was Greenland forested? *

» There is evidence that southern Greenland was forested 130

_ _ ) _ In the medieval time, there was no
to 116 thousand years ago, that is the last interglacial period. global warming, but regional only.
More likely it was 450 — 800 thousand years ago. [1] Today there is global warming.

= More recently, during the medieval warm period, Greenland
was warmer, but still covered with the ice sheet. [2]

950 — 1250
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[1] https://www.science.org/doi/full/10.1126/science.1141758; [2] https://www.science.org/doi/10.1126/science.1177303
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=P7L Today's temperature change -

Changes in global surface temperature relative to 1850-1900

a) Change in global surface temperature (decadal average) b) Change in global surface temperature (annual average) as observed and
as reconstructed (1-2000) and observed (1850-2020) simulated using human & natural and only natural factors (both 1850-2020)
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= IPCC, ARG, Figure SPM.1 (2021)
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=P7L Which trajectory are we on: Ice or hot house?

Known climate states . . .
A Mid-Holocene: T « What is forcing our climate
B, Eemian; v and how much?
C, Mid-Pliocene; =) « (How sensitive is Earth to that
ALl L eE 5 Hothouse Earth forcing?)
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=PrL

Please watch for next time

= An introduction to atmospheric circulation:
https://www.youtube.com/watch?v=Lg91eowtfbw

See moodle
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